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Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let R be a ring and I, J ⊆ R two ideals. I, J are said to be comaximal if I + J = R.

1. Show that IJ ⊆ I ∩ J for any I, J and that equality holds for comaximal ideals. Can you provide a counter-

example when I, J are not assumed to be comaximal?

2. Suppose I, J are comaximal. Show that, for m,n ≥ 1 Im, Jn are also comaximal.

Consider now ideals I1, . . . , IN ⊆ R. For 1 ≤ i ≤ n, call Ji =
⋂

j ̸=i Ij .

3. Suppose that for all i, Ii, Ji are comaximal. Show that for all n ≥ 1, In1 ∩. . .∩InN = (I1 . . . IN )n = (I1∩. . .∩IN )n.

Finally, consider the k-algebra R = k[x1, . . . , xn] and ideals I, J ⊆ R.

4. Show that I, J are comaximal if, and only if, V (I) ∩ V (J) = ∅.

Solution 1.

1. ⊆. Let a ∈ IJ . Then there are i ∈ I, j ∈ I such that a = ij. From this a ∈ I ∩ J .

⊇. Suppose I, J comaximal. Let a ∈ I ∩ J . a = a · 1 = a(i+ j) = ai+ ja ∈ IJ .

Counterexample. R = k[t]. I = J = (t). IJ = (t2) ⊉ I ∩ J = (t).

2. Let 1 = i+ j. Suppose m ≥ n. Then Im+Jn ⊆ In+Jn. Suffices to show it for m = n. Then 1 = (i+ j)2m =∑2m
k=0 c

2m
k i2m−kjk. For k ≤ m, i2m−k ∈ Im and for k ≥ m jk ∈ Jm. Hence Im + Jm = R.

3. Proof by induction on N . By induction, In1 ∩ . . .∩InN−1 = Jn
N . So In1 ∩ . . .∩InN = Jn

N ∩Inn . By comaximality of

InN and Jn
N , In1 ∩ . . .∩ InN = Jn

NInn = (JNIn)
n. By comaximality of JN and In, get I

n
1 ∩ . . .∩ InN = (JN ∩ In)

n.

4. Suppose that I, J are comaximal and x ∈ V (I) ∩ V (J) = V (I + J). It means that for f ≡ 1 ∈ k[x1, . . . , xn],

1 = f(x) = 0, which is a contradiction.

Exercise 2. Let R be a ring. Recall that a domain is called integrally closed if, for any x ∈ K = Frac(R), if there

exist a1, . . . , an ∈ R such that xn + a1x
n−1 + . . . + an = 0, then x ∈ R. Show that R is a DVR if, and only if, R

is an integrally closed Noetherian local domain with Krull dimension one. (Hint: You can use without proof that

any ideal I ̸= (0), R in a Noetherian, dimension 1, integrally closed domain can be written uniquely as a product

of prime ideals. Can you find a uniformizer of R?)
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Solution 2.

• DV R ⇒ integrally closed Noetherian local domain with Krull dimension 1.

Suppose R is a DV R. By definition, it is a Noetherian local domain. It has Krull dimension 1 because all

ideals are (0) or (tn) where (t) is the unique maximal ideal. Only (0) ⊉ (t) are prime. PID implies UFD

which implies integrally closed.

• DV R ⇐ integrally closed Noetherian local domain with Krull dimension 1.

Suppose R is integrally closed Noetherian local domain with Krull dimension 1. Take m unique maximal.

Using the hint with I = m2, m2 ⊉ m. Take ω ∈ m \m2. Then using the hint with I = (ω), we get m = (ω).

Exercise 3. A valuation on a field K is a surjective function φ : K → Z ∪ {∞} satisfying the following axioms:

(i) φ(a) = ∞ ⇔ a = 0

(ii) φ(ab) = φ(a) + φ(b)

(iii) φ(a+ b) ≥ min(φ(a), φ(b))

Show that the datum of a DVR with quotient field K is equivalent to the datum of a valuation on K i.e.

1. Given a valuation φ on K, R = {φ ≥ 0} is a DVR with maximal ideal m = {φ > 0}.

2. Given a DVR R, ord is a valuation on R (assuming we set ord(0) = ∞).

Now consider K = Q and p ∈ Z some prime number.

3. Show that Z(p) is a DVR. What is the associated valuation ordp?

4. Show that any valuation on Q is equal to ordp for some prime number p. (Hint: Using Bezout’s theorem, you

can show that a valuation on Q is strictly positive in at most one prime.)

Solution 3.

1. Let R = {φ ≥ 0} and m = {φ > 0} is an ideal.

R is local : let x ∈ R \m. ϕ(x) = 0. Then ϕ(x−1) = −ϕ(x) = 0 so x−1 ∈ R. Hence x ∈ R×.

A uniformizer is given by an element of valuation 1.

2. Let a, b ∈ R∗. Let t be a uniformizer. Then a = utn, b = vtm. ab = uvtn+m, so ord(ab) = ord(a) + ord(b).

a+ b = utn + vtm. Suppose n ≤ m. Clearly ord(a+ b) ≥ n = min{ord(a), ord(b)}.

3. Z(p) = {r ∈ Q | r = a
b , b /∈ pZ}. A uniformizer is given by p. ordp(r) is just vp(a).

4. Let v be a valuation on Q.

• v(Z) ⊆ Z≥0

• v(pn1
1 · · · · · pnr

r ) = n1v(p1) + · · ·+ nrv(pr). v(x) = 1 ⇒ x is prime.

• p ̸= q primes. By Bézout up + vq = 1, u, v ∈ Z, so 0 = v(1) ≥ min{v(up), v(wq))}. Hence at most one

of v(p) or v(q) is 1.

As v is surjective, take the unique p such that v(p) = 1. Then v = vp. Indeed v(q) = 0 for all q ̸= p.
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Exercise 4. A simple point P on a curve F with tangent line L at P is called a flex if ordFP (L) ≥ 3. The flex is

called ordinary if ordFP (L) = 3 and a higher flex otherwise.

1. Let F = Y −Xn. For which n does F have a flex at P = (0, 0) and what kind of flex?

2. Suppose that P = (0, 0), L = Y and F = Y +aX2+ . . . (the remaining terms having degree at least 2). Show

that P is a flex if, and only if, a = 0. Give a simple criterion for calculating ordFP (Y ).

Solution 4.

1. F = Y −Xn. P = (0, 0). The tangent line is L = Y . X is a uniformizer of OP (F ). ordFP (Y ) = n because

Y = Xn. Hence F has a flex of order n for n ≥ 3.

2. As before, X is a uniformizer of OP (F ). P = (0, 0). The tangent line is L = Y . In OP (F ), Y = −aX2 + . . .

hence has valuation ≤ 2 if and only if a ̸= 0.

Simple criterion : if we write F = Y (1 + F1(X,Y )) +XmF2(X) with X ∤ F2(X), F1(0, 0) = 0. In ordFP (Y ),

Y = −Xm(1 + F1(X,Y ))−1F2(X)

Hence ordFP (Y ) = m.

Exercise 5. Let V = V (X2 − Y 3, Y 2 − Z3) ⊆ A3
k, P = (0, 0, 0) and m = mP (V ). Compute dimk(m/m2).

Solution 5.

m/m2 = (x, y, z)⊗k[x,y,z] OP (V )/m

m/m2 = k · x⊕ k · y ⊕ k · z

so dimk(m/m2) = 3.
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